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semiconductors with dielectric constants of 10–20, has been
shown to also yield reliable data for a plastic material, polyethy-
lene, with a dielectric constant of only about 2. Since, for most
polymers, the dispersion is very small in the radio-frequency to
microwave range and the microwave measurement is both very
simple and accurate, the interference method may find technical
application in material characterization. Prerequisites are, of
course, a low loss tangent and, hence, good transmission through
the thick sample.
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Equivalence of Propagation Characteristics
for the Transmission-Line Matrix and

Finite-Difference Time-Domain
Methods in Two Dimensions

N. R. S. Simons and E. Bridges

Abstract —In previous papers an equivalence between the TLM and
FD-TD methods has been established by altering the definitions of field
components and operation of the TLM algorithm such that the appro-
priate finite-difference expressions are satisfied. In this paper the equiv-
alence of propagation characteristics for the TLM and FD-TD methods
in two dimensions is discussed. Propagation analysis of a TLM shunt
node complete with permittivity and loss stubs, and dispersion analysis
of the two-dimensional FD-TD method in an arbitrary medium are
performed and yield dispersion relations. The relations are identical
when the FD–TD method is operated at the upper limit of its stability
range.

I. INTRODUCTION

The finite-difference time-domain (FD-TD) method, devised
by Yee [I], is based on central difference approximations of
Maxwell’s curl equations. The method has been successfully
applied to a variety of problems, as summarized by Taflove and
Umashankar [21. The transmission-line matrix (TLM) method,
pioneered by Johns and Beurle [3], is based on a physical model
of wave propagation and has also been extensively applied to
the analysis of electromagnetic field problems [4]. Both are
time-domain numerical techniques capable of simulating
Maxwell’s equations in arbitra~ media.

Previous papers by Johns and Butler [51 and Johns [61 have
shown that TLM models for diffusion and electromagnetic field
problems can be operated in such a way that they are equivalent
to finite-difference methods. The implications of operating the
TLM models under these circumstances have been discussed by
Johns [6], with comments by Gwarek [7]. In [5] and [6], the TLM
method is formulated in terms of global scattering and connec-
tion matrices. Johns has stated that a’ great deal of flexibility
exists in the operation of a TLM algorithm and the definitions
of field components in terms of the pulses traveling along the
elemental transmission lines. Johns describes the manner in
which a mesh of three-dimensional expanded nodes can be
operated such that it satisfies the three-dimensional Yee algo-
rithm [6]. A similar analysis has been performed in which a
mesh of unloaded two-dimensional shunt nodes is shown to
satisfy the Yee algorithm in two dimensions [8]. The equivalence
is obtained by altering the definitions for field quantities in the
TLM mesh.

The purpose of this paper is to show that, mathematically, the
propagation characteristics of the two methods are identical
under certain circumstances, regardless of the definitions of
field quantities and operation of the TLM model.

II. DISPERSION RELATION OF FD–TD METHOD

For finite-difference approximations of the wave equation,
the dispersion relation is obtained by substituting the mathemat-
ical representation of a plane wave into the difference approxi-
mation of the wave equation. A genera~ discussion of dispersion
in finite-difference models of the wave equation has been pro-
vided by Trefethen [9]. For two-dimensional field distributions
(independent of the z direction, and selecting HZ= O) Maxwell’s
curl equations can be combined to yield the following wave
equation for E=:

J*EZ #Ez 6’E. d2Ez
—+— .mp L+ep —
dx 2 ay2 at a12

(1)

for a medium of permittivity ~, permeability w and conductivity
~. Expression (1) can be discretized using central difference
approximations to obtain

E$(xO+ Al, yo)–2E:o(x0, YO)+ -E:’’(xO – Al, YO)
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Fig. 1. Two-dimensional shunt node complete with permittivity and
10SSstubs.

A solution of (1) can be written as

E= = ~J~f+YCOS$. +’YSi. +Y (3)

which represents a plane wave traveling through the medium
characterized by a complex propagation constant y = a + j~ at
an angle @ to the x axis. Inserting solution (3) into the differ-
ence approximation (2), the following relationship is obtained:

y cos ~Al y sin ~Al
sinhz + sinhz

2 2

,upA12 Alz uAt
.

J 4At
sin mAt – ep — sin2

At2
—. (4)

2

For the case of a nonconductive medium (a= O), (4) reduces to
the familiar result [9]

j3 cos ~Al ~ sin q$Al A12 wAt
sinz + sin2

2 2
= ep ~ sin2 —

At 2“
(5)

III. PROPAGATIONANALYSISOF A TLM SHUNT NODE

Brewitt-Taylor and Johns have applied the concept of deter-
mining the dispersion relation to TLM models and have re-
ferred to it as propagation analysis [10]. The same technique
that is used to calculate dispersion relations is applied, but
instead of substituting the analytical, solution of the lossy wave
equation into a difference approximation, it is substituted into
an equation governing the behavior of voltages on a transmis-
sion line matrix. Brewitt-Taylor and Johns apply propagation
analysis to compare two- and three-dimensional lumped element
and transmission line models for lossless homogeneous media,
In this section propagation analysis of a two-dimensional shunt
node complete with permittivity and conductivity stubs is per-
formed.

The two-dimensional node complete with permittivity and loss
stubs is shown in Fig. 1. The elemental transmission lines
(branches 1, 2, 3, 4) have a distributed inductance, L, and
distributed capacitance, C. As introduced by Akhtarzad and
Johns [11], the open circuit stub of characteristic admittance YO
is used to model permittivity:

Y.

()C,=21+T (6)

and the match terminated stub of characteristic admittance GO
is used to model conductivity:

Go .sOI’_“z ~“ (7)

The node can be analyzed using simple transmission line
theory and superposition. Exciting the node with U1 and sup-

OR,

y Zo, Al V5
9

Fig. 2. Equivalent circuit of two-dimensional shunt node with branches
2, 3, and 4 shorted and branch 1 excited with a voltage UI.

pressing nodes 2, 3, and 4, the equivalent circuit of the node is
shown in Fig. 2. The load impedance, Z~, is made up of three
short circuit stubs of length Al and unit characteristic impedance,
one open circuit stub of length Al/2 and characteristic admit-
tance YO,and a match terminated line with characteristic admit-
tance GO, all in parallel. The impedance Z~ is expressed as

( 3
ZL =

)

/31Al+G “
+ jYO tan — (8)

jtan~lAl 2 0

where ~1 denotes the phase constant for propagation along the
elemental transmission lines of the model. Transmission line
theory can be used to write

( jsin~lAl
VI = u: COSBIAl +

ZL )
(9)

where u; is the voltage at the center of the node with all nodes
but 1 suppressed. Applying the principle of superposition, the
voltage us can be expressed as a summation of the voltages tJ~
as

(lo)

where v? is the voltage obtained at node 5 caused by a voltage
u. applied to node n with all other nodes suppressed. Owing to
the symmetry of the node, expression (10) can be written as

and substituting expression (8) into (11) yields

(
~lAl

~ v.= v, 4cos/31Al -2 YOsin2 ~
)

+ jGOsin/31Al . (12)
~=1

Equation (12) governs the behavior of voltages on the -transmis-
sion line model. The transmission line matrix approximates a
uniform propagating medium. An ideal voltage wave traveling
through space at an angle @ to the x axis is given by

where y is the complex phase constant for the voltage wave,
given by a + j~. Substituting (13) into (12) yields the following
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expression:

~ ycos~Al ~ ysin~Al
sinh + sinh

2 2

G Y.

()=j$sin PIA1–2 1+ ~ sinz y. (14)

If a medium with no conductivity is considered (a= GO = O),
expression (14) can be reduced to

/3 cos q5Al + sin, /3 sin ~Al Y.
si*2

()
=2 1+~ sin2 y. (15)

2 2

On the right-hand side of (14) and (15), the term ~lAl can be
replaced by WAt,since the phase constant Pl refers to propaga-
tion along the elemental transmission lines of the model.

IV. EQUIVALENCEOF PROPAGATIONCHARACTERISTICS

Although the propagation characteristics of both the two-
dimensional TLM and FD–TD methods have been examined in
the past, the equivalence between the two methods has not been
established. Expression (4) and (14) are the dispersion relations
for the FD–TD and TLM methods, respectively, in a 10SSY
medium. Expressions (5) and (15) are the dispersion relations
for the FD–TD and TLM methods, respectively, in a lossless
medium. Many different choices exist in the possible forms of
the conditions of equivalence. If the traditional TLM definitions
for the material constants are maintained (given by (6) and (7)),
the TLM and FD–TD methods correspond under the following
conditions:

Y.()●,=2 l+=

Go

““z

(16a)

(16b)

pr=l (16c)

and

:=l. (16d)

Note that a TLM mesh represents a normalized simulation
space in which the vacuum relative permittivity is 2, and the
vacuum relative permeability is 1. Therefore, the maximum
phase velocity of waves traveling through a two-dimensional
mesh of shunt nodes is I/a.

If the TLM mesh is considered to represent a medium having
a vacuum relative permittivity and permeability of 1, then the
material parameters in the normalized TLM mesh would be

Y“()e,= I+y (17a)

and

/Jr=l. (

Equation (15) could be rewritten as

,6 cos ~Al ~ sin qbAl coAt
sinz + sin2

2
= 2e,p, sin2 ~.

2

and the lossless FD–TD dispersion rela-The above expression
tion are identical if

7b)

18)

(19)

or

1 Al
c —.
max = IK A.”

(20)
~L al

The above relation is the FD–TD stability criterion at the upper
limit of stability. Therefore, the FD–TD and TLM algorithms
have identical propagation characteristics if the FD-TD algo-
rithm is operated at the upper limit of its stability range.

Operating the FD–TD algorithm at its stability limit has
benefits in that the amount of dispersion introduced by the
algorithm is minimum for all directions of propagation. In
addition, for certain test cases, simulations indicate that accu-
racy is near optimal [12].

V. CONCLUSIONS

In Section II, the dispersion relation for the two-dimensional
Yee algorithm was presented. This relation has been derived by
many different authors io the past. Brewitt-Taylor and Johns
have applied a similar concept, referred to as propagation
analysis, to determine dispersion relations of transmission line
models. In Section III, propagation analysis was applied to
determine the dispersion relation for a two-dimensional shunt
node complete with permittivity and loss stubs, which has not
been previously reported. The dispersion relations are shown to
be equivalent when the FD–TD algorithm is operated at the
upper limit of its stability range. This equivalence has been
established regardless of the definitions for field quantities and
operation of a two-dimensional mesh of shunt nodes. Basic
equivalences such as the one reported in this paper will help
researchers working with either method, and serve as a starting
point for future comparisons.

Johns has discussed the significance of comparisons and the
philosophy behind the FD-TD and TLM methods [6]. The two
methods are distinct in that they are based on different ideas.
The TLM method is based on a discrete model for wave
propagation realized as a mesh of intersecting transmission
lines; the FD–TD method is based on mathematical finite
differencing. It is interesting to find that these distinct concepts
produce numerical methods that can have identical wave propa-
gation characteristics.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations in isotropic media,” IEEE Trans.
Antennas Propagut., vol. AP-14, pp. 302-307. May 1966.

[2] A. Taflove and K. Umashankar, “The finite-difference time-domam
(FD-TD) method for electromagnetic scattering and interaction
problems,” J. Electromagn. Waves and Appl., vol. 1, no. 3, pp.
243-267, 1987.

[3] P. B. Johns and R. L. Beurle, “Numerical sohrtion of two dimen-
sional scattering problems using a transmission line matrix,” Proc.
Inst. Elec. Eng., vol. 118, no. 9, pp. 1203-1208, Nov. 1971.

[4] W. J. R, Hoefer. “The transmission-line matrix method—Theory
and applications,” IEEE Trans. Mzcrowace Theory Tech. vol. MTT-
33, pp. 882-893, Oct. 1985.

[5] P. B. Johns and G. Butler, “The consistency and accuracy of the
TLM method for diffusion and its relationship to existing methods,”
Int. J. Numer. Meth. Eng., vol. 19, pp. 1549–1554, 1983.

[6] P. B. Johns, “On the relationship between TLM and finite differ-
ence methods for Maxwell’s equations, ” IEEE Trans. Microwaue
Theory Tech. vol. MTT-35, pp. 60-61, Jan. 1987.

[7] W. K. Gwarek, “Comments on ‘The relationship between TLM and
finite difference methods for Maxwell’s equations,’” IEEE Trans.
MicrowaL>e Theory Tech., vol. MTT-35, pp. 872-873, Sept. 1987.

[8] N. R. S. Simons, “Application of the transmission-line matrix
method to open region field problems,” M.SC. thesis, University of
Manitoba, 1989.

[9] L. N. Trefethen, “Group velocity in finite difference schemes,”
SL4M Rev., no. 24, pp. 113-136, 1982.

[10] C. R. Brewitt-Taylor and P. B. Johns, “On the construction and
numerical solution of transmission-line and lumped network models



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 2, FEBRUARY 1991

of Maxwell’s equations,” Znt. J. Numer. Meth. Eng., vol. 19, pp.
13-30, 1980.

[11] S. Akhtarzad and P. B. Johns, “Generalized elements for the TLM
method of numerical analysis,” Proc. Inst. Elec. Eng., vol. 122, no.
12, pp. 1349-1352, Dec. 1975.

[12] I. S. Kim and W. J. R. Hoefer, “Effect of the stability factor on the
accuracy of two-dimensional TD–FD simulation,” in Proc. 1989
IEEE AP-S Symp., 1989, pp. 1108–1111.

Analysis of a Transition Between Rectangular
and Circular Waveguides

B. N. Das and P. V. D. Somasekhar Rao

Abstract —This paper presents analysis of a transition between rect-
angular and circular waveguides coupled by a rectangular slot in a
metallic wall of finite thickness in the common transverse cross section,
Expressions for VSVVR and admittance are obtained using a moment
method formulation with entire basis and testing functions. Numerical
data on the variation of input VSWR with frequency are obtained and a
comparison hetween the theoretical and experimental results is pre-
sented, The variations in the values of minimum VSWR with change in
slot dimensions are also studied.

I. INTRODUCTION

Excitation of a circular waveguide from a rectangular wave-
guide has attracted the attention of scientific workers for a long
time [1]–[3]. The transition which has been suggested is de-
signed in such a way that there is a transformation of cross
section from rectangular on one side to circular on the other
side. The transition designed for better matching [2], [3] is quite
bulky apart from the complexity in mechanical fabrication.

Investigations of coupling between waveguides through aper-
tures in the form of a rectangular slot in the common transverse
cross section have been reported [4]–[6]. To the best of the
authors’ knowledge, no data on the performance characteristics
of this type of junction are available in the literature.

In the present work, investigations are carried out for a
junction (transition) between rectangular and circular wave-
guides coupled through a rectangular slot. Analysis based on the
method of moments with entire sinusoidal basis and testing
functions taking into account the effect of the finite thickness of
the transverse metallic wall in which the slot is milled is similar
to that in [7]. The expressions for the elements of matrices to be
inverted are different for the problem under investigation.

Expressions for the coefficient, VSWR and normalized shunt
admittance seen by the rectangular waveguide are derived. A
comparison between the theoretical and experimental results on
the variation of input VSWR with frequency is presented for a
rectangular slot of length 1.7 cm and width 0.107 cm in a metal
plate of thickness 0.09144 cm. Variations in the values of mini-
mum VSWR with change in slot parameters are also studied.
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Fig. 1. Slot coupled transition between rectangular and circular wave-
guides.

!X’

Fig. 2. Expanded view of the coupling slot represented as a slot wave-
guide.

11. ANALYSIS

Fig. 1 shows the geometry of a slot coupled transition between
a rectangular and a circular waveguide. The rectangular cou-
pling slot of length 2L and width 2W is milled in a metallic
plate of thickness t.An expanded view of the slot waveguide
representation [7] of the coupling slot is shown in Fig. 2,
together with the two interfaces and the incident and reflected
waves in the slot waveguide.

Following the procedure of [7, sec. II] the column matrices
representing the amplitude coefficients for the total tangential
electric fields at the two interfaces of the slot waveguide are
same as those given by [7, eqs. (38)–(40)]. They are reproduced
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